

WKO 21.09.2023

Vortragende: Mag. Cornelia Führer BA

Mag. Cornelia Führer BA

- Ernährungswissenschafterin
- Dipl. Ernährungsberaterin nach der TCM
- Vortragende zu div. Themen
- vegetarische & vegane Ernährung
- Gewichtsmanagement
- langfristige Ernährungsumstellung

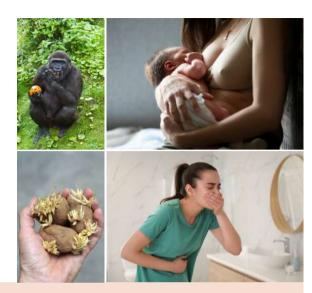
www.eatwhatfeelsgood.net

eatwhatfeelsgood - Ernährungsberatung Cornelia Führer

INHALT

- Zuckerkonsum und seine Auswirkungen
- Kohlehydrate: von Zucker bis Ballaststoffe
- Glykämischer Index, glykämische Last und Blutzuckerspiegel
- Versteckter Zucker in Lebensmitteln (Beispiele)
- Labeling: Was bedeuten zuckerfrei, zuckerarm & Co?
- Zuckeralternativen: Sinn oder Unsinn?
- Praktische Tipps für den Alltag

ZUCKER sing


śárkarā

griech. σάκχαρον "sákcharon" "saccharum" lat. ahd. "zuccer" arabisch "succar" "zucchero" ital. "sugar" engl.

ZUCKER süß

- Sicherheit
- Beruhigung
- Energie
- "Hirnnahrung"
- Farbsehen zum Erkennen von frischen Früchten

ZUCKERKONSUM IN ÖSTERREICH 2021/22

79g pro Person pro Tag

= ca. 20 Würfel Zucker pro Tag

https://de.statista.com/statistik/daten/studie/287859/umfrage/pro-kopf-konsum-von-zucker-in-oesterreich/

ZUCKERKONSUM GLOBAL 2020

6,5 Würfelzucker ca. 6 Teelöffel Zucker

25g ZUCKER PRO PERSON UND TAG

< 1/2 Tafel Milka Schokolade (100g)

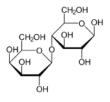
3/4 Dose Coca Cola (330ml)

< 1 Fläschchen Smoothie (250ml)

FOLGEN DES ZUCKERKONSUMS

- Karies
- Gewichtszunahme
- Stoffwechselstörungen (erhöhte Blutfettwerte, NAFLD, Autoimmunerkrankungen...)
- Müdigkeit, Antriebslosigkeit, Schlafstörungen
- Konzentrationsprobleme
- depressive Verstimmung
- Magen-Darm-Probleme
- koronare Herzerkrankungen
- Hautprobleme
- Pilzerkrankungen
- Migräne
- Diabetes mellitus Typ II

Zucker Zucker

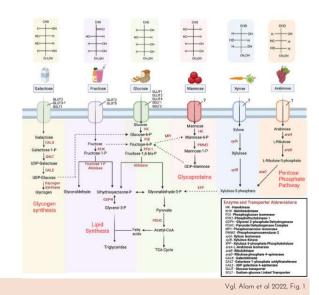

KOHLENHYDRATE ZUCKER BIS BALLASTSTOFFE

- wichtige Energiequelle: alle Zellen, aber v.a. Gehirn (54%), Nebennierenmark, rote Blutkörperchen
- Aufrechterhaltung von Wasser- und Elektrolythaushalt
- proteinsparende Wirkung und Verhinderung der Bildung von Ketonen, die beim Abbau von Eiweiß oder Fettsäuren entstehen
- guter Energiespeicher in Leber (bis 150g) und Muskeln (300-600g)
- Mitwirkung bei der k\u00f6rpereigenen Immunabwehr (Schleimstoffe, Blutgruppen, Gerinnungshemmer)
- Struktursubstanzen in Knochen und Bindegewebe, sowie Schutzfunktion
- Ballaststoffe "füttern" das Mikrobiom

Elmadfa, Leitzmann 2004

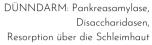
KOHLENHYDRATE ZUCKER BIS BALLASTSTOFFE

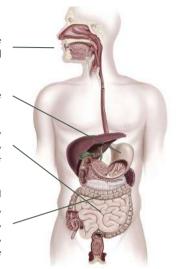
Monosaccharide: Glucose, Fructose, Galactose...



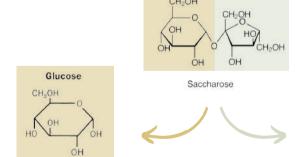
Disaccharide: Lactose, Saccharose...

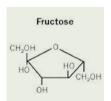
Oligo- und Polysaccharide: Stärke, Glycogen, Pektin, Inulin, Zellulose, Carragen...


Stoffwechselwege verschiedener Zuckerarten

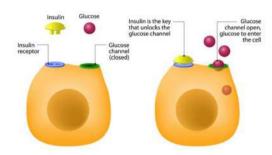

Verdauung & Aufnahme

MUND: alpha Amylase Speichel

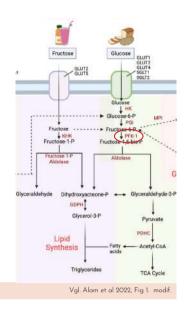

MAGEN: Pause

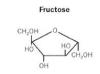


DICKDARM: unzureichend verdaute KH und Ballaststoffe (Inulin, Pektin...), Abbau durch Darmbakterien, tw. Futter für das Mikrobiom, Entstehung von kurzkettigen Fettsäuren & Gasen, Resorption letzter Nährstoffe



Haushaltszucker (Saccharose)




Stoffwechselwege Fruktose vs. Glukose

Glucose Regulatoren: Insulin & PKF1

Fruktose

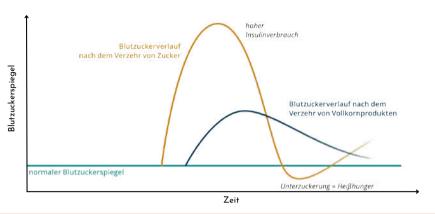
- Absorption und Regulation im Dünndarm
- Kleine Mengen werden vollständig absorbiert
- Zu große Mengen überladen den Dünndarm, belasten die Leber und werden auch von der Mikroflora im Dickdarm verstoffwechselt
- Speicherform der Fruktose als Fett (v.a. in der Leber)
- geringere Sättigung, da keine Insulinausschüttung
- Dysbiose im Dickdarm und Reduktion der Darmbarriere
- · Vorsicht v.a. bei Fruktose als Zusatz!

Glykämischer Index (GI)

 Anstieg der Blutzuckerkurve nach dem Verzehr eines Lebensmittels im Vergleich zu Glukose (100%)

 Abhängig von: Zusammensetzung des Lebensmittels, Verarbeitungsform, Wassergehalt, Zusammensetzung

der Mahlzeit, physiologische Schwankungen ...


Fruktose vs. Glukose

Lebensmittel Pro 100 g	Fruktose in g	Glukose in g	Verhältnis Fruktose:Glukose
Agavendicksaft ^{cs}	55,6	12,4	1:0,2
Ahornsirup	29,8	30,1	1:1
Ananas	2.4	2,1	1:0,9
Apfel	5.7	2,0	1:0,4
Aprikose (Marille)	0,9	1,7	1:1,9
Banane	3,4	3,5	1:1
Birne	6,7	1,7	1:0,2
Brombeeren	3,1	3,0	1:1
Erdbeeren	2,2	2,2	1:1
Heidelbeeren	3,3	2,5	1:0,7
Himbeeren	2,0	1,8	1:0,9
Kirsche (sauer)	4.3	5,2	1:1,1
Kirsche (süß)	6,3	7,1	1:1,1
Kiwi	4.6	4,3	1:0,9
Mango	2,6	8,0	1:0,3
Papaya	3,5	3,6	1:1
Pfirsich	1,2	1,0	1:0,8
Pflaumen	2,0	3,4	1:1.7
Weintrauben	7,3	7,4	1:1

Glykämische Last

- Produkt aus dem GI und der Menge des zugeführten Lebensmittels
- z.B. GL von 100g Baguette entspricht dem von 700g Karotten
- Indikator für die Insulinausschüttung

Blutzuckerspiegel

Bildquelle: BZfE Beratungsmaterial Zucker

Blutzuckerspiegel

ZU VIEL ZUCKER?

Überlastung der Körperzellen

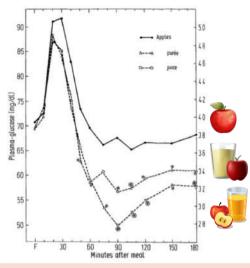
- konstant hoher Zuckerkonsum
- Überlastung der Energiebereitstellung in den Mitochondrien
- vermehrte Bildung freier Radikale

zu viele freie Radikale

Der Blutzuckerspiegel ist beeinflussbar!

	Konsistenz	Kombination verschiedener Lebensmittel	Ballaststoffe
1	flüssig, weich	Brot mit Marmelade	nein
1	fest	Brot mit Hummus, Ei, Rohkost	ja

Blutzuckerspiegel


Blutzucker sinkt stetig nach dem Konsum eines ganzen Apfels

größerer Zucker"absturz" nach einem Apfel-Smoothie

Apfelsaft führt zum größten Zuckersturz

Vgl. Greger Michael MD

Ballaststoffe >30g/d

Unlösliche Ballaststoffe	
Cellulose	Pflanzenteile: Vollkorngetreide, Hülsenfrüchte, Blatt- und Wurzelgemüse
Hemicellulosen (tw. löslich und fermentierbar)	Pflanzenteile: Vollkorngetreide, Hülsenfrüchte, Blatt- und Wurzelgemüse
Lignine	Leinsamen, Getreideschalen, holzige Teile von Obst- und Gemüseschalen, Kerne, Steinzellen
Chitin	Pilze, Krabben- und Insektenpanzer
Resistente Stärke	Sie entsteht durch das Abkühlen stärkehaltiger Lebensmittel, wie Kartoffeln, Nudeln oder Reis. Die Struktur wird durch den Abkühlprozess verändert, die Stärke passiert unverdaut den Dünndarm und gelangt in den Dickdarm, wo sie als Futter für das Mikrobiom gilt.

Ballaststoffe >30g/d

Lösliche Ballaststoffe		
Pektine	Obstfruchtfleisch (Apfel, Birne, Quitte)	
β -Glukane	Hafer, Gerste, Hefe	
Schleimstoffe	Leinsamen, Psyllium	
Pflanzengummis (Carrageen, Guar)	aus Johannisbrot, Algen, Guarkernmehl (meist isoliert als Verdickungsmitte	
Inulin	Zwiebeln, Artischocken, Chicoree, Schwarzwurzeln, Topinambur	
Oligosaccharide	Hülsenfrüchte, Getreidekeime	
Polydextrose	Synthetisch	
Methylcellulose	Synthetisch	

Obst & Trockenfrüchte

ca. 2 Portionen Obst pro Tag (rund 300g Frischobst)

1 Portion Frischobst =

Trockenfrüchte 1/3 der Menge von Frischobst

max. 50g/Tag

Smoothies

- 1 Banane
- 1 Apfel
- 5 Frdbeeren

gesamt 48g Zucker

Besser: 1-1,5 Stück Obst kombiniert mit Gemüse & Proteinquelle, Ballaststoffe, Fettquelle

Zucker hat viele "Gesichter"

Rohrzucker, Rohrohrzucker, Kandis, Melasse, Glukose-Fruktose-Sirup, Invertzuckersirup, Maltodextrin, Weizendextrin, Oligofruktose, Dextrose, Raffinose, Raffinade, Laktose, Glukose, Fruktose, Traubenzucker, Traubensüße, Trockenfrüchte, Fruchtextrakt, (Süß-)Molkenpulver, Milchzucker, Magermilchpulver, Weizendextrin, Malzextrakt, Gerstenmalz(extrakt), Honig, Dattelsirup, Kokosblütenzucker, Traubenfruchtsüße, Apfelfruchtsüße, Fruktosesirup, Fruktose-Glukose-Sirup, Fruchtextrakt, Dicksaft, Karamell, Invertzuckersirup, Ahornsirup, Reissirup, Agavendicksaft, Karamellzuckersirup ...

Zucker in Lebensmitteln

Milchaetränken (Kakao, Vanillemilch. Joahurtdrinks...) Fruchtjoghurt, Molkegetränken, Smoothies aus dem Handel, Brot & Gebäck, Saucen Dressings, fertige Aufstriche, "Kinderlebensmittel", Convenience Food, Frühstückscerealien. Alkoholische Getränke, fettarme Produkte, Konserven (z.B. Erbsen aus der Dose, Rotkohl im Glas, Dosenobst...), gezuckerte Trockenfrüchte, Fertigsalate, Müsliriegel, Gewürzmischungen für Salate, Suppenwürze ...

Zucker in Lebensmitteln

Zutaten: WEIZENMEHL 34%, WEIZENVOLLKORNMEHL 16%, Wasser, Weizensauerteig (WEIZENMEHL, Wasser), HAFERFLOCKEN 4,5%, ROGGENMEHL 4,5%, Hefe, Rapsöl, Speissalz, Zucker, Karamellzuckersirup (Zucker, Wasser), Säureregulator: Natriumdiacetat, Mehlbehandlungsmittel: Ascorbinsäure. In Großbuchstaben angegebene Zutaten enthalten allergene Inhaltsstoffe.

Durchschnittliche Nährwerte	Produkt enthält durchschnittlich	
	Unzubereitet	
	100 g	
Energie	1098 kJ 260 kcal	
Fett	4.1 g	
Fett, davon gesättigte Fettsäuren	0.4 g	
Kohlenhydrate	45 g	
Kohlenhydrate, davon Zucker	4,3 g	
Ballaststoffe	4.4 g	
Eiweiß	8,6 g	
Salz	0.9 g	

Quelle: www.spar.at

Zucker in Lebensmitteln

Zutaten: Rote Rüben*, Weingeistessig*, Zucker, Salz unjodiert, Kümmel*. *aus biologischer Landwirtschaft.

Durchschnittliche Nährwerte	Produkt enthält durchschnittlich
	Unzubereitet
	100 g
Energie	182 kJ 43 kcal
Fett	≤ 0,5 g
Fett, davon gesättigte Fettsäuren	< 0,1 g
Kohlenhydrate	7 g
Kohlenhydrate, davon Zucker	6,9 g
Ballaststoffe	2,8 g
Eiweiß	1,7 g
Salz	1,5 g

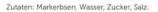
Quelle: www.spar.at

Zucker in Lebensmitteln

Zutaten: 59 % Tomaten", 14 % Tomatenmark Z fach konzentriert", Sonnenblumenkerne", Zwiebeln", Sonnenblumenöl", 2 % Basilikum", Maisstärke", Agavendicksaft", Meersatz, Zitronensaftkonzentrat", Knoblauch", Oregano", Thymlan", Rosmarin", "aus biologischer Landwirtschaftt

Zucker in Lebensmitteln

Durchschnittliche Nährwerte pro 100)g	
Brennwert in kcal	224	
Brennwert in kj	936	
Fett	9,7	
davon gesättigte Fettsäuren	1,2	
Kohlenhydrate	5,0	
davon Zucker	0,8	
Ballaststoffe	4,6	
Eiweiß	27	
Salz	2,2	


Trinkwasser, Erbsenprotein, Sonnenblumenöl, Kürbispüree (Kürbis, Zitronensaft), Erbsenfaser, Gewürze, Aceto Balsamico di Modena IGP (Weinessig, Traubenmostkonzentrat), Apfelsaftkonzentrat, Gewürzextrakt, Kartoffelstärke, Karamellzuckersirup, Salz

Quelle: www.dm.de

Quelle: www.vegini.at

Zucker in Lebensmitteln

Zutaten: Erbsen*, Wasser, Meersalz unjodiert. *aus biologischer Landwirtschaft.

Zucker in Lebensmitteln

Durchschnittliche Nährwertangaben	pro 100 g
Brennwert	434 kcal / 1.819 k
Fett	17 g
davon gesättigte Fettsäuren	9,4 g
Kohlenhydrate	57 g
davon Zucker	17 g
Ballaststoffe	6,2 g
Eiweiß	7,2 g
Salz Äguivalent	0,02 g

Zutaten: 43% HAFERFLOCKEN, WEIZENSIRUP, Kokosol, 5,4% HASELNUSSMARK, Kokosblütensirup, Reismehl, 2,5% Kakao-Nibs, 2,3% Kakao-pulver, Emulgator: Lecithine. Kann Spuren von Erdnüssen, Mandeln, Eiern, Milch, Sesam und Soja enthalten.

Quelle: www.spar.at

Quelle: www.dm.de

Zucker in Lebensmitteln

Durchschnittliche Nährwertangaben	pre 100 g
Brennwert	462 kcal / 1.934 kJ
Fett	23 g
davon gesättigte Fettsäuren	8,1 g
Kohlenhydrate	32 g
davon Zucker	18 g
Eiweiß	30 g
Salz Äquivalent	1,2 g

Zutaten: Geröstete ERDNÜSSE* (22%), SOJAcrispies (16%) (isoliertes SOJAelweils*, Starke*, Salz), SOJAbohnen* (12%), Invertzuckersirup, Maltodextrin*, Erbsenprotein* (6%), Kokosnussöl, Glukosesirup, Fruktose, Kürbiskerne* (4,5%), Feuchthaltemittel (Glycerin), Salz, natürliches Aroma*, Vanilleextrakt*, Ernulgator [Lecithine (SOJA)]. * natürliche Zutat Kann enthaltemit. MILCH, GLUTEN, NÜSSE.

Zucker in Lebensmitteln

Zutaten: HAFERFLOCKEN 60%, Oligofruktosesirup, Süßungsmittel: Maltit, SCHALEN-FRÜCHTE 7% (MANDELN, HASELNÜSSE, CASHEWKERNE, PEKANNÜSSE), Pflanzenöl (Raps, Palm), WEIZENFLOCKEN, Kokos 2%, VOLLKORNWEIZENMEHL, Maltodextrin, Quinoaflocken, Leinsamen, Aroma, Emulgator: Lecithin (SOJA), Salz. In Großbuchstaben angegebene Zutaten enthalten allergene Inhaltststoffe.

Kann Spuren von anderen SCHALENFRÜCHTEN enthalten.

Kann Spuren enthalten von: Erdnüsse und daraus gewonnene Erzeugnisse, Schalenfrüchte und daraus gewonnene Erzeugnisse, Sesamsamen und daraus gewonnene Erzeugnisse

Enthält:Glutenhaltiges Getreide und daraus hergestellte Erzeugnisse, Schalenfrüchte und daraus gewonnene Erzeugnisse, Sojabohnen und daraus gewonnene Erzeugnisse Ohne Zuckerzusatz

Enthält von Natur aus Zucker Enthält Süßungsmittel

Quelle: www.dm.de Quelle: www.spar.at

Zucker in Lebensmitteln

Durchschnittliche Nährwerte	Produkt enthält durchschnittlich	
	Unzubereitet	
	100 g	
Energie	1777 kJ 424 kcal	
Fett	17 g	
Fett, davon gesättigte Fettsäuren	5 g	
Kohlenhydrate	48 g	
Kohlenhydrate, davon Zucker	4.2 g	
Kohlenhydrate, davon mehrwertige	6 g	
Alkohole		
Ballaststoffe	8,5 g	
Elweiß	12 g	
Salz	0,3 g	

Quelle: www.spar.at

Zucker in Lebensmitteln

Zucker Gehalt	pro 100g
Niedriger Gehalt	≤ 5,0 g
Mittlerer Gehalt	> 5,0 g - 22,5 g
Hoher Gehalt	> 22,5 g bzw. > 27g/Portion des Produkts

 $https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/566251/FoP_Nutrition_labelling_UK_guidance.pdf$

Zuckerarm, zuckerfrei, ohne Zuckerzusatz

zuckerarm,	< 5g Zucker / 100g festes LM
low sugars	< 2,5g Zucker / 100ml flüssiges LM
zuckerfrei, sugars free	< 0,5g Zucker / 100g bzw. 100ml LM
kein Zucker zugesetzt,	Keine zugesetzten Mono- oder Disaccharide oder der
ohne Zuckerzusatz,	Zusatz anderer Lebensmittel, welche zum Süßen
with no added sugars	eingesetzt werden (Honig, Sirup, Fruchtsüße…).

 $https://food.ec.europa.eu/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en$

Zuckerarm, zuckerfrei, ohne Zuckerzusatz

zuckerreduziert	Ein- und Zweifachzucker gegenüber vergleichbaren Produkten um 30% verringert
ungesüßt	Kein Zucker, süßende Lebensmittel oder Süßungsmittel dürfen eingesetzt werden.
enthält von Natur aus Zucker	Zucker ist natürlicher Bestandteil des Lebensmittels

Ohne Zuckerzusatz?

Ohne Zuckerzusatz?

Energie	177 kJ, 42 kcal
Fett	0,8-g
Sheon gesittigle Febblioses Obsorreletets ungestitige Petallureni	8.3 g
(deson-reindach urgesättige Fictsäuner)	71,4 g
Kohlenhydrate	7,79
(two Zoke)	3,61
Balastrioffe	0,7 g
Elwei8	0,7 g
Salz	0.10

ZUCKERALTERNATIVEN

natürlich vorkommende Zuckeralternativen

ZUCKERALTERNATIVEN

natural sweeteners artificial sweeteners nutritive sweeteners

non nutritive sweeteners

Zucker

ca. 405kcal/100g

- wird aus Zuckerrüben (beta vulgaris) oder Zuckerrohr (saccharum officinalis) hergestellt
- weißer Zucker: gereinigt
- brauner Zucker: Rohrohrzucker, brauner Kandis, weißer Rübenzucker mit Zusatz von Rohrzuckersirup
- Vollrohr- & Rohrohrzucker:
 - Rohrohrzucker: ohne Reinigungsschritte und Kristallisationsschritte, enthält noch Melasse, ist feuchter & dunkler, intensiverer karamelliger Geschmack
 - Vollrohrzucker: aus Zuckerrohr, ausgepresst, gefiltert & eingekocht, vermahlen

Honig

Süßkraft 1,2

- 302kcal/100g
- antibakterielle Wirkung
- 40% Fruktose, 30% Glukose
- ca. 17% Wasser
- ca. 3% Beistoffe (Enzyme, Aromastoffe, Säuren, Vitamine, Mineralstoffe)

Geschmack:

- sortenabhänig
- mild-süß bis herb/harzig

Anwendung:

- Brotaufstrich, Süßungsmittel
- industriell in Speisen, Backwaren, Kosmetika, Medizinprodukten ...

Ahornsirup Süßkraft < 1 (nach Grad)

• 274kcal/100g

- 1/3 weniger kcal als Haushaltszucker
- Saft des Ahornbaumes
- ca. 1,6% Vitalstoffe (Kalium, Kalzium, Riboflavin, Thiamin, Aminosäuren, Polyphenole)
- ca. 32% Wasser
- hoher Gehalt an Saccharose, Glucose : Fruktose = 60:40

Geschmack:

• je nach Grad (A-F)

• mild-süß bis intensiv süß

Anwendung:

- zum Süßen von Speisen & Backwaren
- industriell für Brotaufstriche etc.

Reissirup Süßkraft < 1

- 300kcal/100g
- Spuren von Mineralstoffen
- hs. Glukose und Maltose als Einfachzucker

Geschmack:

• mild-süß

. . .

• ev. leicht nussig

Anwendung:

- Brotaufstrich, Süßen von Speisen & Backwaren
- besonders für fruktosefreie Lebensmittel

Agavensirup/-dicksaft

Süßkraft 1,2

• 304kcal/100g

- enthält hauptsächlich Fruktose, aber auch etwas Glukose, Saccharose & Inulin
- Fru : Glu = 7:3 bis 9:3
- enthält Spuren von Vitaminen & Mineralstoffen
- ca. 23% Wasser
- niedriger GI, aber Fruktose Problem

Geschmack:

- intensiv-süß
- wenig Eigengeschmack

Anwendung:

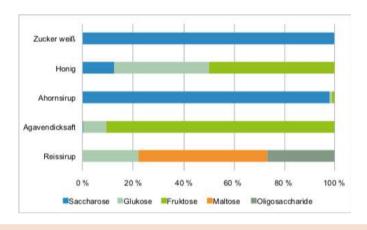
- zum Süßen von Speisen, Getränken, Backwaren, Gelees, Marmeladen ...
- industriell für Backwaren, Marmeladen ...

Zuckerrohr Melasse Süßkraft 0.6

- ca. 290kcal/100g
- enthält Vitamine & Mineralstoffe
- einfach oder mehrfach gekocht
- dunkler und mehrfach gekocht: mehr Kalzium, Magnesium, Kalium, Eisen
- ev. pestizidbelastet, Bioprodukte kaufen!

Geschmack:

- malzig
- lakritzartia


Anwendung:

- industriell als Futtermittel, Biotechnologie
- im Hausgebrauch zum Süßen, Backen, als Brotaufstrich etc.

Übersicht Glukose/Fruktose

Küchenhacks / Anwendungstipps

Backen

mit Honig, Agavendicksaft, Ahornsirup oder Reissirup:

- enthalten Wasser
- um 20% weniger Flüssigkeit verwenden
- Ofentemperatur senken & Backzeit verlängern
- für gleiche Süßleistung wie Zucker:
 - o mehr Ahornsirup oder Reissirup
 - o weniger Honig oder Agavendicksaft
- bei Honig mehr Backpulver verwenden (Teig wird kompakter)
- Honig ist nicht für gebundene Speisen mit Speisestärke geeignet

Knies 2019

Knies 2019

Kokosblütenzucker Süßkraft 1

- 390kcal/100g
- Spuren von Mineralstoffen & Vitaminen
- zum Backen bedingt geeignet (klumpt im Teig)
- hauptsächlich Saccharose
- niedriger GI?

Geschmack: Any

- süß, intensivev
- karamellartia

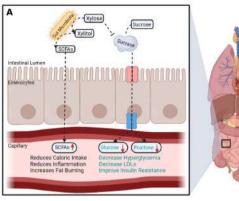
Anwendung:

- Süßen von Getränken & Süßspeisen (Pancakes)
- für Backwaren, Proteinpulver, Bio-LM

Zuckeralkohole

- Sorbit(ol), Xylit(ol), Erythrit, Mannit, Isomalt, Maltit...
- werden langsamer vom Körper aufgenommen bzw. unvollständig absorbiert
- mit geringerer Insulinmenge oder insulinunabhängig verstoffwechselt
- beeinflussen Blutzuckerspiegel fast nicht
- Struktur ähnlich den KH
- weniger kariogen
- bis 20g/d unbedenklich

WHICH'S CHEM, 12004 UNTERNACHINA, DEUTSCHAMDE, TUCHEFREIS KALLSAMM MIT SISSINGSMITTEN UNG MINITERUS DEUTSCHAMDE, TUCHEFREIS KALLSAMM MIT SISSINGSMITTEN UNG MINITERUS DEUTSCHAMD. EINE MIT SISSINGSMITTEN UNG MINITERUS DEUTSCHAMD FRANKEN ALLE STEMPALE STEMPALE STEMPALE SISSINGSMITTEN UNG MINITERUS MINITERUS MINITERUS MINISTER DEUTSCHAMDE STEMPALE TEMPALE AUTHORITORIS DEUTSCHAMD TEMPALE TEMP


Xylit(ol), Xylose, "Birkenzucker"

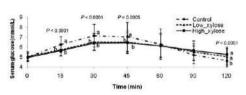
- ca. 40% kcal von Zucker
- Süßkraft 1
- kann genauso wie Zucker verwendet werden
- als Masseanteil im Teig
- leicht wasserlöslich
- ev. leicht kühlender/erfrischener Geschmack (Anwendung in Kaugummis)
- als Streusüße oder zum Backen
- nicht kariogen
- persönliche Verträglichkeit beachten
- kommt natürlich in Beeren, Pilzen, div. Gemüse & Früchten vor

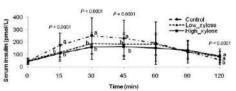
Xylit(ol), Xylose, "Birkenzucker"

Zusatz von Xylose als positiver Effekt auf den Blutzuckerspiegel?

Bae et al 2011

Xylit(ol), Xylose, "Birkenzucker"


Randomisierte Studie (49 P., doppelblind, crossover)


50g Saccharose in 130ml Wasser

- +
 - 0,0g Xylose
 - 5,0g Xylose
 - 7,5g Xylose

2h Zeitfenster

Mit Xylose 30-50% niedrigere Blutglucoseund -Insulin-Werte innerhalb 60 Min.

Bae et al 2011

Erythrit

- kcal-frei
- Süßkraft 0,7
- · besonders gut verträglich
- kommt natürlich in manchen Früchten, Gemüse und fermentierten Lebensmitteln vor
- leicht kühlender Effekt
- als Streusüße, Puderzuckerersatz oder "brauner Zucker"-Ersatz
- hitzebeständig, zum Backen einsetzbar
- nicht kariogen

E-Nummern

Zuckeraustauschstoffe (E-Nummern)	Süßstoffe (E-Nummern)
Isomalt (E953) Laktit (E966) Maltit (E965) Mannit (E421) Sorbit (E420) Xylit (E967) Erythrit (E968)	Acesulfam K (E950) Aspartam (E951)(aus Phenylalanin) Cyclamat (E952) Neohesperidin DC (E959, pflanzl.) Saccharin (E954) Thaumatin (E957, pflanzl.) Sucralose (E955) Aspartam-Acesulfam-Salz (E962)

Künstliche Süßstoffe (energiefrei)

- kalorienfrei bzw. –arm
- viel höhere Süßkraft als Zucker
- synthetisch hergestellt, aber ev. natürlichen Ursprungs
- tägliche Höchstmenge festgelegt (ADI)
- aufgrund der starken Süßkraft nur kleine Mengen benötigt
- flüssig, Pulverform oder in Tabletten gepresst
- verändertes Produkt/Backeigenschaften im Hausgebrauch, da sie kein Volumen beitragen

Künstliche Süßstoffe (energiefrei)

Süßstoff	Süßkraft im Vergleich zu Zucker	ADI (mg/kg KG)
Saccharin	300-550	2,5
Cyclamat	35	11
Acesulfam-K	200	9
Aspartam	200	40
Thaumatin	2000-3000	k.A.
Neohesperidin DC	bis 1500 (400-600)	5
Steviaglycosid	100-300	4
Sucralose	500-600	15

Künstliche Süßstoffe (energiefrei)

SUCRALOSE E955

- kalorienfrei, da nicht vom Körper verwertbar (aus Saccharose hergestellt)
- sehr stabil unter verschiedenen Temperatur- und pH-Bedingungen
- geeignet zum Backen und für Lebensmittel, die lange haltbar sein sollen
- gelangt in den GI-Trakt & wird mit dem Stuhl ausgeschieden (11-27% absorbiert)
- nicht vom Mikrobiom abbaubar, aber hat wachstumshemmenden Effekt (bakteriostatisch)

SACCHARIN E954

- kalorienfrei, da fast nicht vom Körper verwertbar
- metallischer Nachgeschmack
- als Säure, gebunden an Kalzium oder Natrium
- 85-95% über Plasmaproteine in Blutstorm & Urin
- 5-15% Ausscheidung im GI-Trakt kann das Mikrobiom beeinflussen

Bildquelle: www.kandisin.at

Künstliche Süßstoffe (energiefrei)

ACESULFAM-K E950

- kalorienfrei, da nicht vom Körper verwertbar
- direkt vom Blutkreislauf absorbiert
- kein Einfluss auf Darm & Mikrobiom erwartet
- innerhalb von 24h über Nieren (99%) & Stuhl (1%) ausgeschieden

STEVIA GLYCOSID

- stevia rebaudiana
- erreicht den Dickdarm & wird von Bakterien metabolisiert
- Bakterien produzieren daraus Steviol, Steviolbiosid & Glukose

Künstliche Süßstoffe (energiefrei)

ASPARTAM E951

- ohne Nachgeschmack, verliert bei Hitze die Süßkraft
- 4 kcal/g
- wird im Dünndarm aufgespalten und absorbiert (für weitere Stoffwechselwege genutzt, wie Protein verwertet)
- erreicht den Dickdarm nicht & hat keinen Einfluss auf das Mikrobiom
- seit 1981 als Süßungsmittel akzeptiert (JECFA = the Joint WHO and Food and Agriculture Organization's Expert Committee on Food Additives)
- Konsum innerhalb des täglichen Aufnahmelimits von 40mg/kg KG/d
- Erwachsener mit 60kg: 12-36 Dosen eines gesüßten Softdrinks

Künstliche Süßstoffe (energiefrei)

ASPARTAM

Aspartan

WHO stuft Süßstoff als »möglicherweise krebserregend für den Menschen« ein

Aspartam ist einer von elf in der EU zugelassenen Süßstoffen. Nun warnt die WHO. Ernährungsforscher reagieren trotzdem gelassen – und geben zwei wichtige Hinweis ZUCKERERSATZ

WHO: SUSSSTOFF ASPARTAM
"MOGLICHERWEISE KREBSERREGEND" WAS BEDEUTET DAS?

Steckt in Diät-Cola, Light-Produkten, Kaugummi

Aspartam "möglicherweise krebserregend" – das sagen Experten zur WHO-Entscheidung

Künstliche Süßstoffe (energiefrei)

ASPARTAM

WHO Veröffentlichung 2023 im Kontext:

IARC (International Agency for Research on Cancer) 4 Klassifikationsstufen:

- carcinogenic (kanzerogen): z.B. verarbeitetes Fleisch, Asbest
- probably carcinogenic (wahrscheinlich kanzerogen): z.B. Nachtarbeit und der Konsum von rotem Fleisch
- possibly carcinogenic (möglicherweise kanzerogen): elektromagnetische Strahlung von Mobiltelefonen, Aspartam
- not classifiable (nicht klassifizierbar)

https://www.reuters.com/business/healthcare-pharmaceuticals/whos-cancer-research-agency-say-aspartame-sweetener-possible-carcinogen-sources-2023-06-29/

BfR Stellungnahme 2023

Stellunanahme Nr. 004/2023 des BfR vom 07. Februar 2023

Künstliche Süßstoffe ja/win?

- Ursache für Heißhunger?
- Blutzuckerspiegel?
- Individuelle Reaktion beobachten!
- Sensitivität des Darms
- persönliche Verträalichkeit
- Nutzen?
- Veränderung der Geschmacksschwelle für Süßes?
- Finfluss auf das Mikrobiom?
- nicht kariogen
- Abhängigkeit/Aktivierung des Belohnungszentrums im Gehirn?

- Einfluss auf das Körpergewicht, wenn sie statt Zucker verwendet werden?
 - o neutraler Effekt oder positiver Effekt
 - Einsparung von kcal
- Alleinige Verwendung von Süßstoffen:
 - o beim Menschen bisher kein positiver/negativer Effekt nachgewiesen
 - kontroverser Ergebnisse in Studien mit Nagetieren: teilweise sogar Anstieg des Körpergewichts (Acesulfam K, Saccharin)

Künstliche Süßstoffe

Belohnungssystem

- verminderte Reaktion & Produktion von Botenstoffen im Körper beim Einsatz von Süßstoffen
- kalorische Zufuhr fehlt
- Belohnung ev. zusammen mit Kohlenhydrataufnahme
- spätere kcal-Kompensation gering

Alltagstipps

- Mehr Gemüse als Obst essen!
- Regelmäßige Mahlzeiten & satt essen!
- Süßes als Nachspeise zu einer Mahlzeit
- Balance zwischen nährstoffreichen Lebensmittel und Genusslebensmitteln
- Zuckerhältiges mit Proteinen bzw. Fett kombinieren
- Trockenfrüchte portionieren & mit Proteinen/Fetten kombinieren
- Mehlspeisen als Hauptspeisen nach einer nährstoffreichen Vorspeise (z.B. erst Gemüsesuppe, dann Kaiserschmarrn)

Alltagstipps: Mahlzeitengestaltung

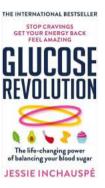
Gemüse (Farbe!)

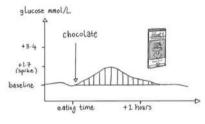
> + gezielte Fettzugabe

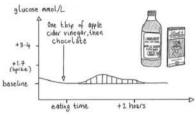
> > (c) eatwhatfeelsgood

Alltagstipps

- ein ausgewogenes Frühstück als Basis für den Tag
- Süßspeisen bewusst genießen (kein food FOMO!)
- eigene Verträglichkeit beobachten (Darm)
- möglichst viel selbst machen
- Fertigprodukte in Maßen und nährstoffreich kombinieren
- Den Wochenschnitt beobachten: Balance zwischen Genusslebensmitteln "fun foods" und nährwertbringenden Lebensmitteln?
- Säfte und Softdrinks als Ausnahmen, besser Wasser!

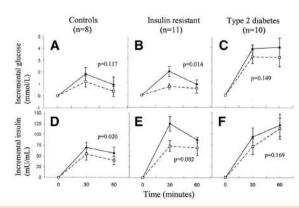



Alltagstipps


- Reaktion auf Süßungsmittel beobachten (Heißhunger)
- Zutatenlisten und Nährwerttabellen checken
- Label kritisch hinterfragen!
- Bei Heißhunger: 20 Min. warten!
- Bewegung! V.a. nach einer kohlehydratreichen Mahlzeit
- Blutzuckerstabilisierende Wirkung von Essig

Der "Essigtrick"

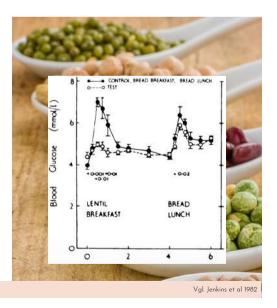
Bildquelle: Glucose Revolution, Jessie Inchauspe:


Vinegar Improves Insulin Sensitivity to a High-Carbohydrate Meal in Subjects With Insulin Resistance or Type 2 Diabetes

Testpersonen

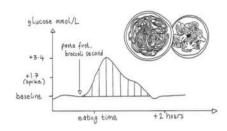
- Kontrollgruppe (8)
- insulinresistent (11)
- DM Typ II (10)

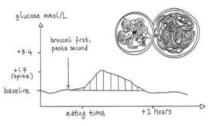
Nüchterne Proband:innen


- 20g Apfelessig, 40g Wasser, 1TL Saccharin
- Vergleich Placebo
- nach 2 Min. Weißer Bagel, Butter und Orangensaft (87g KH)

Johnston et al 2004

"second meal effekt"


- blutzuckerstabilisierende Wirkung von Hülsenfrüchten auf die folgende Mahlzeit
- Effekt sogar vom Abendessen bis zum Frühstück
- Bildung kurzkettiger FS durch
 Darmbakterien



Die richtige Mahlzeitenkombi

- 1. Gemüse / Ballaststoffe
- 2. Fettquelle & Proteinquelle
- 3. Vollkornprodukte / KH-Quelle / Stärke
- 4. Zucker / Obst

Ist die Reihenfolge entscheidend?

Bildquelle: Glucose Revolution, Jessie Inchauspe:

Zuckersucht?

- süß = angenehmer Geschmack
- Dopamin wird ausgeschüttet
- Aktivierung des Belohnungssystems im Gehirn
- Veränderung des Darmmikrobioms (Dybiose)
- Blutzuckerschwankungen
- Alternative Belohnungen finden!

QUELLEN

- Wikipediaeintrag zum Thema Zucker https://de.wikipedia.org/wiki/Zucker, Zugriff 13.09.2023, 11:35.
- https://de.statista.com/statistik/daten/studie/287859/umfrage/pro-kopf-konsum-von-zucker-in-aesterreich/, Zugriff 16.09.2023, 16:33.
- https://food.ec.europa.eu/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en, Zugriff 29.08.2023, 16:10.
- https://www.reuters.com/business/healthcare-pharmaceuticals/whos-cancer-research-agency-say-aspartame-sweetener-possible-carcinogen-sources-2023-06-29/, 08.09.2023, 12.02
- https://www.efsa.europa.eu/de/press/news/ans100414, Zugriff 17.09.2023, 11:26.
- https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/2340. Zuariff 17.09.2023. 11:29
- https://nutritionfacts.org/video/beans-and-the-second-meal-effect/, Zugriff 17.09.2023, 16:13.
- https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/566251/FoP_Nutrition_labelling_UK_guidance.pdf

- Alam Yasmine Henna, Kim Raymond, Jang Cholsoon: Metabolism and Health Impacts of Dietary Sugars. J Lipid Atheroscler. 2022 Jan;11(1):20-38
- Arnone Djésia, Chabot Caroline, Heba Anne-Charlotte, Kökten Tunay, Caron Bénédicte, Hansmannel Franck, Dreumont Natacha, Ananthakrishnan Ashwin N., Quilliot Didier, Peyrin-Biroulet Laurent. Sugars and Gastrointestinal Health. Clinical Gastroenterology and Hepatology, Volume 20, Issue 9, 2022, Pages 1912-1924.e7
- Bae Yun Jung, Bak Youn-Kyung, Kim Bumsik, Kim Min-Sun, Lee Jin-Hee, Sung Mi-Kyung: Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutrition Research and Practice (Nutr Res Pract) 2011;5(6):533-539
- Elmadfa Ibrahim, Leitzmann Klaus "Ernährung des Menschen" (4. Auflage, Ulmer Verlag 2004)
- Inchauspe lessie: Glucose Revolution
- Jenkins DJ, Wolever TM, Taylor RH, Griffiths C, Krzeminska K, Lawrie JA, Bennett CM, Goff DV, Sarson DL, Bloom SR. Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr. 1982 Jun;35(6):1339-46.
- Johnston Carol S, Cindy M. Kim, Amanda J. Buller. Vinegar Improves Insulin Sensitivity to a High-Carbohydrate Meal in Subjects With Insulin Resistance or Type 2 Diabetes. Diabetes Care Vol.
- Knies Jana Maria: Von Agavendicksaft bis Kokosblütenzucker. Süßende Lebensmittel als Zuckeralternativen . Ernährungsumschau 2/2019, M88-99
- Lückenrath, Müller: Diatetik & Ernährungsberatung. 4. Aufl., Haug Verlag, 2011
- Neacsu N. A., Madar A.: Artificial sweeteners versus natural sweeteners. Bulletin of the Transilvania University of Braşov Series V: Economic Sciences Vol. 7 (56) No. 1 2014
- Newsome Rachel, Yang Ye, Jobin Christian: Western diet influences on microbisme and carcinogenesis. Seminars in Immunology (67) 2023, 101756.

 Pang Michelle D, Goossens Gijs H, Black Ellen E: The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 7:598340 (2021)
- Süßungsmittel: Mehrheit der Studien bestätigt keine Gesundheitsbeeinträchtigung allerdings ist die Studienlage unzureichend : Stellungnahme Nr. 004/2023 des BfR vom 07. Februar 2023 (Bewertungsstand 23. September 2019)